In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles.
نویسندگان
چکیده
Positive-contrast techniques are being developed to increase the detection of magnetically labeled cells in tissues. We evaluated a post-processing positive-contrast technique, susceptibility-gradient mapping (SGM), and compared this approach with two pulse sequences, a gradient-compensation-based "White Marker" technique and an off-resonance-based approach, inversion recovery on-resonance water suppression (IRON), for the detection of superparamagnetic iron oxide (SPIO) nanoparticle-labeled C6 glioma cells implanted in the flanks of nude rats. The SGM, White Marker and IRON positive-contrast images were acquired when the labeled C6 glioma tumors were approximately 5 mm (small), approximately 10 mm (medium) and approximately 20 mm (large) in diameter along the largest dimension to evaluate their sensitivity to the dilution of the SPIO nanoparticles as the tumor cells proliferated. In vivo MRI demonstrated that all three positive-contrast techniques can produce hyperintensities in areas around the labeled flank tumors against a dark background. The number of positive voxels detected around small and medium tumors was significantly greater with the SGM technique than with the White Marker and IRON techniques. For large tumors, the SGM resulted in a similar number of positive voxels to the White Marker technique, and the IRON approach failed to generate positive-contrast images with a 200 Hz suppression band. This study also reveals that hemorrhage appears as hyperintensities on positive-contrast images and may interfere with the detection of SPIO-labeled cells.
منابع مشابه
Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI
Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...
متن کاملPotential positive MRI contrast agent based on PVP-grafted superparamagnetic iron oxide nanoparticles with various repetition times
Objective(s): The present study aimed to evaluate the capability of synthesized and modified superparamagnetic iron oxide nanoparticles (SPIONs) as the positive contrast agent in magnetic resonance imaging (MRI) by investigating the effect of repetition time (TR) on the MRI signal intensity. Materials and Methods: SPIONs were synthesized using the co-precipitation method, and their surfac...
متن کاملDetection of Her2 Levels in Cancerous Cells Based on Iron Oxide Nanoparticles
In this study, we synthesized Herceptin conjugated magnetic nanoparticles (HMNs) as an alternative probe to discover the levels of HER2 (Human epidermal growth factor receptor-2) in the surface of cells. These nanoparticles can be used by magnetic resonance imaging (MRI) (non-invasive methods) for screening the patients with HER2 positive or negative tumors. Dextran coated iron oxide nanopartic...
متن کاملSystematic review: Superparamagnetic Iron Oxide nanoparticles as contrast agents in diagnosis of multiple sclerosis
Several MRI contrast agents (CAs) are used in medical diagnosis that gadolinium (Gd3+) is the most widely used as contrast agents. Unfortunately, its toxicity is due to its inefficiency. In this review, we discuss about the ability of SPIONs in MRI and application in Multiple Sclerosis diagnosis. Superparamagnetic iron oxide nanoparticles (SPIONs) such as magnetite nanoparticles are used as goo...
متن کاملDetection of Her2 Levels in Cancerous Cells Based on Iron Oxide Nanoparticles
In this study, we synthesized Herceptin conjugated magnetic nanoparticles (HMNs) as an alternative probe to discover the levels of HER2 (Human epidermal growth factor receptor-2) in the surface of cells. These nanoparticles can be used by magnetic resonance imaging (MRI) (non-invasive methods) for screening the patients with HER2 positive or negative tumors. Dextran coated iron oxide nanopartic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NMR in biomedicine
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2008